and 2. The well individualized thiocation is pyramidal, suggesting an $s p^{3}$ hybridation state for the S atom; it possesses only one symmetry plane (for $y=0.25$ or 0.75), in which the S, O and $\mathrm{C}(1)$ atoms are located; but it approximates very much to the $3 m$ symmetry assigned to the free ion. The bond distances $\mathrm{S}-\mathrm{C}(1)$ and $\mathrm{S}-\mathrm{C}(2)$ are equal and the bond angles $\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(2)$ and $\mathrm{C}(2)-\mathrm{S}-\mathrm{C}(2)$ are slightly different.

This work was carried out at the 'Centre de Diffractométrie de l'Université de Bourgogne'.

References

Coulder, L. C., Gantzel, P. K. \& McCullough, J. D. (1963). Acta Cryst. 16, 676-681.
Enraf-Nonius (1977). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declerce, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Stout, G. H. \& Jensen, L. M. (1968). In X-ray Structure Determination. New York: Macmillan.
Zimmermann, I. C., Barlow, M. \& McCullough, J. D. (1963). Acta Cryst. 16, 883-887.

Non-Natural 14-Hydroxy Steroids. II. $13 \alpha, 14 \alpha$ and $13 \beta, 14 \beta$ Isomers of Methyl 14-Hydroxy-1,7,17-trioxo-5 β-androst-8-ene-19-oate

By Marc Drouin
Laboratoire de chimie structurale, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K $2 R 1$
Réjean Ruel
Laboratoire de synthèse organique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K $2 R 1$
and André G. Michel*
Laboratoire de chimie structurale, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

(Received 25 June 1990; accepted 17 December 1990)

Abstract

C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}, \quad M_{r}=360 \cdot 41, \quad \lambda(\mathrm{Cu} K \alpha)=\) $1 \cdot 54056 \AA$, room temperature. (I) ($5 \beta, 10 \beta, 13 \alpha, 14 \alpha$)Methyl 14-hydroxy-1,7,17-trioxoandrost-8-ene-19oate, triclinic, $P \overline{1}, a=7.9514$ (5), $b=9.2892$ (5), $c=$ $12 \cdot 8534$ (12) $\AA, \alpha=81 \cdot 256$ (6), $\beta=75.796$ (6), $\gamma=$ $77.908(5)^{\circ}, \quad V=894.85(11) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.338 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu=0.77 \mathrm{~mm}^{-1}, \quad F(000)=383.96$, final $R=0.043$ for 2912 observed reflections. (II) ($5 \beta, 10 \beta, 13 \beta, 14 \beta$)-Methyl 14-hydroxy-1,7,17-trioxo-androst-8-ene-19-oate, monoclinic, $P 2_{1} / n, \quad a=$ $12 \cdot 8704$ (9),$b=10 \cdot 4481$ (9), $c=13 \cdot 1482$ (5) $\AA, \beta=$ $104 \cdot 103(5)^{\circ}, \quad V=1714 \cdot 77(20) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.396 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu=0.81 \mathrm{~mm}^{-1}, \quad F(000)=767.92$, final $R=0.055$ for 2516 observed reflections. These two non-natural steroids bear a methoxycarbonyl group at $\mathrm{C}(10)$. In both molecules the relative stereochemistry is cis for the A / B ring junction and cis for the C / D ring junction. The relative orientations of $\mathrm{MeO}_{2} \mathrm{C}-\mathrm{C}(10)$ and $\mathrm{HO}-\mathrm{C}(14)$ are anti for (I) and syn for (II). The methoxycarbonyl group lies at the axial position for (I) and equatorial for (II), relative

^[* To whom correspondence should be addressed.]

0108-2701/91/081689-05\$03.00
to ring A. The energies of possible conformations for (I) and (II) are evaluated, wherein the A rings adopt a chair conformation.

Introduction. Cardioactive steroids used in the treatment of heart disease have the ability to slow the heart rate and, at the same time, increase the contractility of the muscle. However, the natural steroids used exhibit a dangerously high toxicity, while most patients receive 60% of the toxic dose in order to obtain the desired therapeutic response (Weisner \& Tsai, 1986). The synthesis of new cardioactive steroids having a wider margin of safety has thus become a major goal shared by many research groups. Furthermore, the synthesis of such nonnatural 14-hydroxy steroids, and subsequent analyses of their activity will hopefully allow a better understanding of the structure-activity relationships.

As part of a study aimed at the synthesis of various natural and non-natural 14-hydroxy steroids, (I) and (II) (Fig. 1) were obtained upon alkaline treatment ($\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux) of tetraketone (III) as a 3:2 mixture (Ruel \& Deslongchamps, 1990).
(C) 1991 International Union of Crystallography

The present crystallographic analyses were undertaken to confirm the structure of steroids (I) and (II). The observation of two different conformations for ring A [the methoxycarbonyl is axial for (I) and equatorial for (II)] prompted us to evaluate the relative conformational energies of possible conformations for both steroids.

Experimental. Enraf-Nonius CAD-4 diffractometer, graphite-monochromator, $\mathrm{Cu} K \bar{\alpha}$ radiation, the $\omega / 2 \theta$ scan mode was used for the data collection at a constant speed of $2.7^{\circ} \mathrm{min}^{-1}$. Two standard reflections were monitored every 60 min without significant deviation. Cell parameters were obtained by least-squares procedure on 24 reflections with 2θ in the range $60-80^{\circ}$. (I) Crystal: $0.30 \times 0.30 \times 0.20 \mathrm{~mm}$; $h k l$ range: $-9,9 ; 0,10 ;-15,15.3472$ unique reflections were measured and 2912 were considered observed with $I_{\text {net }}>2 \cdot 5 \sigma I_{\text {net }} ; 2 \theta_{\text {max }}=143 \cdot 3^{\circ}$. (II) Crystal: $0.20 \times 0.20 \times 0.20 \mathrm{~mm} ; h k l$ range: $-15,15$; 0,$12 ; 0,16.3357$ unique reflections were measured and 2516 were considered observed with $I_{\text {net }}>$ $3.0 \sigma I_{\text {net }} ; 2 \theta_{\text {max }}=143.5^{\circ}$. The NRCVAX (Gabe, Lee \& Le Page, 1985) system was used for all calculations. Both structures were solved by the application of direct methods and refined by full-matrix least squares on F. Anisotropic thermal parameters were refined for all non-H atoms. Function minimized: $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, where $w=1 / \sigma^{2}(F)$. All H-atom positional parameters were calculated and refined except for the hydroxy H atom which was found by a difference Fourier map in both molecules. The final residuals obtained at convergence were for (I): $R=$ $0.043, w R=0.033$ and $S=2.589$, max. Δ / σ ratio was 0.001 . In the last difference map, the deepest hole was $-0.17 \mathrm{e} \AA^{-3}$ and the highest peak $0.23 \mathrm{e} \AA^{-3}$. The secondary-extinction coefficient was $0 \cdot 21$ (1) (Larson, 1967; Zachariasen, 1963). For (II): $R=$ $0.055, w R=0.040$, and $S=3.230$; max. Δ / σ ratio

(I)

(III)

(II)

(IV)

Fig. 1. Molecular formulae ($E=\mathrm{COOCH}_{3}$).
was 0.049 . In the last difference map, the deepest hole was $-0.32 \mathrm{e} \AA^{-3}$ and the highest peak $0.33 \mathrm{e} \AA^{-3}$. The secondary-extinction coefficient was 0.31 (2). Atomic scattering factors as stored in the NRCVAX program are those of Cromer \& Waber (International Tables for X-ray Crystallography, 1974, Vol. IV).

Discussion. Table 1 gives the final atomic parameters with their B values for (I) and (II).* Fig. 1 gives the molecular formulae for both molecules. Fig. 2 shows the crystallographic atom numbering and an ORTEP perspective view of the two synthetic hydroxy steroids. Bond lengths and angles are given in Tables 2(a) and 2(b). The crystal structures of (I) and (II) show for both compounds that the A ring adopts two different chair conformations, the C / D ring junction is cis, and the D ring is in a $C(14)$ envelope conformation. In (I) the methoxycarbonyl group (E) at $\mathrm{C}(10)$ has an axial orientation relative to ring A [Fig. 2(a)] compared to an equatorial orientation for (II) [Fig 2(b)]. Fig. 3 shows the observed hydrogen bonding in the crystal packing of (I) and (II). In (I), two hydrogen bonds are geometrically possible (Table 2). The first intermolecular hydrogen bond occurs between the $\mathrm{O}(2)$ oxygen and the hydroxy $\mathrm{O}\left(3^{\mathrm{i}}\right)-\mathrm{H}$ atom. The second one is an intramolecular hydrogen bond between $\mathrm{O}(2)$ and $\mathrm{O}(3)-\mathrm{H}$ contributing to stabilization of the molecular structure. In (II) only an intramolecular hydrogen bond is observed between $\mathrm{O}(2)$ and $\mathrm{O}(3)-\mathrm{H}$. Ring B is held as a pseudo-chair to accommodate the planarity of the B / C junction. The torsional angles, φ_{D}, in (I) and (II) defined by $\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ are relatively small for both steriods [32.6(2) and 29.1 (2) ${ }^{\circ}$ for (I) and (II) respectively] compared to the standard value of $46 \cdot 3^{\circ}$ (Altona, Geise \& Romers, 1968). This is explained by the presence of a double bond between $C(8)$ and $C(9)$. The puckering constants for ring D, Δ (phase angle of pseudorotation) and φ_{m} (maximum angle of torsion) \dagger (Altona, Geise \& Romers, 1968) values are given in Table 2.

[^1]Table 1. Final coordinates and B values for non- H atoms with e.s.d.'s in parentheses

$\boldsymbol{B}_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
(I)				
C(1)	0.4923 (3)	0.8849 (2)	0.1736 (2)	$3 \cdot 38$ (9)
C(2)	0.6336 (3)	0.7555 (2)	0.1365 (2)	4.40 (11)
C(3)	0.8117 (3)	0.80430 (2)	0.0840 (2)	4.98 (12)
C(4)	0.8603 (3)	0.89374 (2)	$0 \cdot 1572$ (2)	$4 \cdot 19$ (11)
C(5)	0.7194 (2)	1.0294 (2)	0.1877 (2)	3.00 (8)
C(6)	0.6992 (3)	1.1430 (2)	0.0911 (2)	3.45 (9)
C(7)	0.5630 (3)	1.2760 (2)	0.1211 (2)	3.14 (9)
C(8)	0.4021 (2)	1.2534 (2)	0.2047 (1)	2.74 (8)
C(9)	0.3918 (2)	$1 \cdot 1210$ (2)	0.2634 (1)	2.67 (8)
C(10)	0.5381 (2)	0.9853 (2)	0.2437 (1)	2.60 (8)
C(11)	0.2304 (3)	1.0989 (2)	0.3513 (2)	3.48 (9)
C(12)	$0 \cdot 1155$ (3)	1-2424 (2)	$0 \cdot 3870$ (2)	$3 \cdot 70$ (9)
C(13)	0.0799 (2)	1.3554 (2)	0.2902 (2)	$3 \cdot 14$ (9)
C(14)	0.2576 (2)	1.3894 (2)	0.2211 (2)	$2 \cdot 98$ (8)
C(15)	$0 \cdot 3055$ (3)	1.5018 (2)	0.2814 (2)	3.90 (11)
C(16)	$0 \cdot 1299$ (3)	1.59542 (2)	$0 \cdot 3300$ (2)	$5 \cdot 07$ (13)
C(17)	-0.0069 (3)	1.5011 (2)	0.3360 (2)	4.21 (11)
C(18)	-0.0334 (3)	1.3047 (3)	0.2293 (2)	4.80 (13)
C(19)	0.5572 (3)	0.8998 (2)	0.3535 (2)	2.94 (9)
C(20)	0.4535 (3)	0.7156 (2)	0.4884 (2)	4.48 (11)
$\mathrm{O}(1)$	0.35182 (20)	0.9129 (2)	0.1472 (1)	4.91 (8)
O(2)	0.5821 (2)	1.4000 (2)	0.0781 (1)	4.64 (7)
$\mathrm{O}(3)$	0.2176 (2)	1.4597 (2)	$0 \cdot 1212$ (1)	$4 \cdot 19$ (7)
$\mathrm{O}(4)$	-0.1630 (2)	1.5370 (2)	0.3722 (2)	6.90 (10)
$\mathrm{O}(5)$	0.6465 (2)	0.9247 (2)	0.4084 (1)	4.23 (7)
$\mathrm{O}(6)$	0.4560 (2)	0.7951 (1)	0.3813 (1)	$3 \cdot 59$ (6)
(II)				
C(1)	$0 \cdot 2323$ (3)	$0 \cdot 2727$ (3)	0.3629 (2)	$2 \cdot 91$ (15)
C(2)	0.2091 (4)	0.4138 (4)	0.3585 (3)	$3 \cdot 89$ (19)
C(3)	$0 \cdot 3105$ (4)	0.4923 (4)	0.4027 (3)	$4 \cdot 19$ (21)
C(4)	0.3626 (3)	0.4498 (3)	0.5135 (3)	3.46 (17)
C(5)	0.3919 (3)	0.3076 (3)	0.5180 (2)	2.67 (14)
C(6)	$0 \cdot 4405$ (3)	0.2646 (4)	0.6300 (3)	3.36 (17)
C(7)	$0 \cdot 3628$ (3)	0.2700 (3)	0.6966 (2)	3.02 (16)
C(8)	$0 \cdot 2458$ (3)	0.2466 (3)	0.6464 (2)	$2 \cdot 22$ (13)
C(9)	0.2165 (2)	0.2153 (3)	0.5431 (2)	$2 \cdot 18$ (13)
C(10)	0.2943 (3)	0.2206 (3)	0.4721 (2)	$2 \cdot 25$ (13)
C(11)	$0 \cdot 1036$ (3)	0.1737 (3)	0.4934 (2)	2.67 (15)
C(12)	0.0455 (3)	0.1271 (3)	0.5738 (3)	2.92 (15)
C(13)	0.0525 (3)	0.2230 (3)	0.6620 (2)	2.47 (14)
C(14)	0.1691 (3)	0.2582 (3)	0.7174 (2)	2.48 (14)
C(15)	0.1620 (3)	0.3993 (3)	0.7507 (3)	3.25 (17)
C(16)	0.0765 (3)	0.4603 (4)	0.6621 (3)	4.07 (19)
C(17)	0.0039 (3)	0.3497 (3)	0.6168 (2)	$3 \cdot 21$ (15)
C(18)	-0.0112 (4)	$0 \cdot 1775$ (5)	0.7382 (3)	4.39 (22)
C(19)	0.3365 (3)	0.0872 (3)	0.4504 (2)	2.70 (14)
C(20)	0.3133 (4)	-0.1363 (4)	0.4604 (3)	4.01 (22)
$\mathrm{O}(1)$	$0 \cdot 2073$ (2)	0.2023 (2)	0.2890 (2)	$4 \cdot 58$ (13)
$\mathrm{O}(2)$	0.3925 (2)	0.2885 (2)	0.7919 (2)	$4 \cdot 34$ (13)
$\mathrm{O}(3)$	$0 \cdot 2034$ (2)	$0 \cdot 1766$ (2)	0.8079 (2)	$3 \cdot 54$ (13)
$\mathrm{O}(4)$	0.0818 (2)	0.3601 (2)	0.5541 (2)	4.58 (13)
$\mathrm{O}(5)$	0.4082 (2)	0.0725 (2)	0.4093 (2)	4.09 (12)
$\mathrm{O}(6)$	0.2815 (2)	-0.0066 (2)	0.4809 (2)	$3 \cdot 34$ (11)

In both molecules φ_{m} is found to be lower than in the natural steriod skeleton. The phase angles (4) for (I) and (II) are relatively low which corresponds to a $\mathrm{C}(14)$ envelope conformation. The resulting overall conformation is viewed in Fig. 4. The α-hydroxy steroid (I) is in an extended conformation compared to the β conformation of (II) which is folded on the α face resulting in a compact structure similar to a related compound (IV) (Douglas, Sawyer \& Yates, 1987). The mean planes through ring A and ring D for (I) make angles with the mean plane through the B / C rings of 60.9 (1) and $55 \cdot 1(1)^{\circ}$ respectively. For (II) these angles are $79 \cdot 1$ (1) and $93 \cdot 0(1)^{\circ}$ respectively. No abnormally short contacts were observed for (I) and (II).

Fig. 2. ORTEP perspective view and atom numbering of (I) top view and (II) bottom view.

Fig. 3. Stereoviews of both molecules [top (I), bottom (II)]. Hydrogen bonds shown by dotted lines.

Table 2. Molecular geometry
(a) Bond lengths (\AA) with e.s.d.'s in parentheses

	(I)	(II)		(I)	(II)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.510(3)$	$1.502(5)$	$\mathrm{C}(10)-\mathrm{C}(19)$	$1.536(3)$	$1.547(4)$
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.540(3)$	$1.561(4)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.514(3)$	$1.516(5)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.211(3)$	$1.200(4)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.543(3)$	$1.518(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.540(3)$	$1.532(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.539(3)$	$1.544(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.508(3)$	$1.515(5)$	$\mathrm{C}(13)-\mathrm{C}(17)$	$1.518(3)$	$1.522(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.529(3)$	$1.531(5)$	$\mathrm{C}(13)-\mathrm{C}(18)$	$1.511(3)$	$1.518(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.520(3)$	$1.522(5)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.547(3)$	$1.547(4)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.5536(25)$	$1.548(4)$	$\mathrm{C}(14)-\mathrm{O}(3)$	$1.4266(22)$	$1.443(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.493(3)$	$1.481(5)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.525(3)$	$1.533(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.485(3)$	$1.510(5)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.515(3)$	$1.514(5)$
$\mathrm{C}(7)-\mathrm{O}(2)$	$1.2223(22)$	$1.233(3)$	$\mathrm{C}(17)-\mathrm{O}(4)$	$1.207(3)$	$1.209(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.348(3)$	$1.358(4)$	$\mathrm{C}(19)-\mathrm{O}(5)$	$1.1919(24)$	$1.189(4)$
$\mathrm{C}(8)-\mathrm{C}(14)$	$1.521(3)$	$1.519(4)$	$\mathrm{C}(19)-\mathrm{O}(6)$	$1.3427(23)$	$1.326(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.531(3)$	$1.524(4)$	$\mathrm{C}(20)-\mathrm{O}(6)$	$1.4570(24)$	$1.460(4)$
$\mathrm{C}(9)-\mathrm{C}(11)$	$1.515(3)$	$1.508(4)$			

(b) Valence angles (${ }^{\circ}$) with e.s.d.'s in parentheses

	(1)			(I)	(1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	116.5 (2)	$115 \cdot 5$ (3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	108.3 (1)	1
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	122.5 (2)	124.0 (3)	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	$113 \cdot 5$ (2)	
O(1)	$120 \cdot 9$ (2)	120.5 (3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	112.0 (2)	
(3)	111.6 (2)	111.6 (3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	108.6 (2)	
C(4)	110.5 (2)	$110 \cdot 1$ (3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	106.4 (2)	
C(5)	112.9 (2)	111.6 (3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	111.6 (2)	
C(6)	$112 \cdot 3$ (2)	111.2 (3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)$	102.8 (2)	
(4)-C(5)-C(10)	111.0 (2)	112.7 (3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	114.8 (2)	12.5 (3)
(6)-C(5)-C(10)	109.7 (2)	107.9 (3)	$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(18)$	112.1 (2)	$107 \cdot 1$ (3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	112.3 (2)	$112 \cdot 6$ (3)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	114.0 (2)	113.1 (2)
C(8)	118.0 (2)	118.7 (3)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(15)$	111.9 (2)	$110 \cdot 0$ (3)
(2)	121.3 (2)	$121 \cdot 3$ (3)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{O}(3)$	111.6 (2)	$110 \cdot 2$ (2)
(2)	120.7 (2)	119.9 (3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$104 \cdot 5$ (2)	$104 \cdot 1$ (3)
C(9)	$120 \cdot 7$ (2)	118.5 (3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(3)$	104.3 (1)	08.4 (3)
(7)-C(8)-C(14)	$115 \cdot 5$ (2)	$116 \cdot 5$ (2)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{O}(3)$	$110 \cdot 1$ (2)	$10 \cdot 9$ (2)
(9)-C(8)-C(14)	123.7 (2)	$124 \cdot 9$ (3)	(14)-C(15)-C(16)	$105 \cdot 2$ (2)	$05 \cdot 2$ (3)
8)-C(9)-C(10)	122.5 (2)	122.8 (3)	(15)-C(16)-C(17)	$105 \cdot 0$ (2)	104.0 (3)
(8)-C(9)-C(11)	120.9 (2)	$120 \cdot 3$ (3)	(13)-C(17)-C(16)	110.5 (2)	
(10)-C(9)-C(11)	116.6 (2)	116.9 (2)	$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{O}(4)$	124.9 (2)	
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	109.0 (1)	109.7 (2)	C(16)-C(17)-O(4)	124.6 (2)	24.9 (3)
(10)-C(9)	110.5 (2)	108.1 (3)	10--C $(19)-\mathrm{O}(5)$	24.9 (2)	
C(19)	109.9 (2)	$5 \cdot 6$ (2)	10)-C(19)-O(6)		
(5)- $\mathrm{C}(10)-\mathrm{C}(9)$	111.9 (1)	1.9 (2)	(19)-O(6))
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(19)$	$107 \cdot 1$ (2)	108.2 (3)	$\mathrm{C}(19)-\mathrm{O}(6)-\mathrm{C}(20)$	$115 \cdot 3$ (2)	$15 \cdot 9$ (3)

(c) Hydrogen-bond distances (\AA) and angles $\left({ }^{\circ}\right)$ between donor $(\mathrm{O}-\mathrm{H})$ and acceptor $(\mathrm{C}=\mathrm{O})$ atoms with e.s.d.'s in parentheses

Hydrogen bond	$\mathrm{O} \cdots \mathrm{O}$	$\mathrm{O}-\mathrm{H}$	$\mathrm{O} \cdots \mathrm{H}$	$\mathrm{O}-\mathrm{H}<\mathrm{O}$
(I) $\mathrm{O}(2)-\mathrm{O}(3)$	$2.764(2)$	$0.877(20)$	$2.216(18)$	$125.0(16)$
$\mathrm{O}(2)-\mathrm{O}\left(3^{i}\right)$	$2.941(2)$	$0.877(20)$	$2.201(20)$	$141.8(15)$
(II) $\mathrm{O}(2)-\mathrm{O}(3)$	$2.753(4)$	$0.850(40)$	$1.980(40)$	$149.0(30)$

Equivalent position (i) $1-x, 3-y,-z$.
(d) Maximum torsional angle ($\varphi_{m}{ }^{\circ}$) and phase angle of pseudorotation (Δ°)

$$
\begin{array}{cccc}
& \text { Molecule (I) } & \text { Molecule (II) } & \text { Standard }^{*} \\
\varphi_{m} & 34 \cdot 4 & 32 \cdot 4 & 46 \cdot 7 \\
\Delta & -37 \cdot 1 & -53 \cdot 4 &
\end{array}
$$

> * Altona, Geise \& Romers (1968).

Fig. 5 presents the four possible conformations of (I) and (II), considering the two chair orientations of ring A. Corresponding conformational energies were computed using the SYBYL Molecular Modeling System (Tripos Associates Inc., 1989). Structure (Ia) shows the methoxycarbonyl group (E) equatorial relative to ring A and in (Ib) E is axial, which corresponds to the minimized X-ray structure. (II a) shows the minimized X-ray structure, E being equatorial relative to A and in (II b) E is axial. Conformation ($\mathrm{I} a$) is $1.6 \mathrm{kcal} \mathrm{mol}^{-1}\left(6.69 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ more

Fig. 4. Overall conformation of both steriods, viewed parallel to the least-squares mean plane through B and C rings (scale in \AA).

(Ia)
$E=0$

(Ib)
$E=1.63$

$$
\begin{gathered}
(\mathrm{II} b) \\
F=2.01
\end{gathered}
$$

Fig. 5. Stereoviews of minimized conformations of (I) and (II) with their relative energies. (Ia) Minimized structure of (I) where E is equatorial relative to ring A. (Ib) Minimized X-ray structure of (I) where E is axial relative to ring A. (II a) Minimized X-ray structure of (II) where E is equatorial relative to ring A. (IIb) Minimized structure of (II) where E is axial relative to ring A.
stable than ($\mathrm{I} b$), while structure ($\mathrm{II} a$) is $3.0 \mathrm{kcal}-$ $\mathrm{mol}^{-1}\left(12.6 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ more stable than (IIb). For (I), the presence of an intermolecular hydrogen bond can easily explain that ($\mathrm{I} b$), while higher in energy, is the preferred structure in the crystalline state. For compound (II), (II a), which is lower in energy, corresponds to the X-ray structure. No major interactions are found in the crystal of (II).

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.

Douglas, S. P., Sawyer, J. F. \& Yates, P. (1987). Acta Cryst. C43, 1372-1375.
Gabe, E. J., Lee, F. L. \& LePage, Y. (1985). The NRCVAX Crystal Structure System. In Crystallographic Computing 3; Data Collection, Structure Determination, Proteins and Databases, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 167-174. Oxford: Clarendon Press.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Ruel, R. \& P. Deslongchamps. (1990). Can. J. Chem. 68, 19171922.

Tripos Associates Inc. (1989). SYBYL. Molecular Modeling Software, Version 5.22. Tripos Associates Inc., St. Louis, Missouri, USA.
Weisner, K. \& Tsai, T. Y. R. (1986). Pure Appl. Chem. pp. 799-810.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Structures of the 1-(2-Deoxy-2-fluoro- β-D-arabinopyranosyl)thymine-Water Complex and 1-(2-Deoxy-2-fluoro- β-D-arabinopyranosyl)-5-ethyluracil*

By H. L. De Winter, N. M. Blaton, O. M. Peeters and C. J. De Ranter \dagger
Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Instituut voor Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium

and A. Van Aerschot and P. Herdewijn
Laboratorium voor Farmaceutische Chemie, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

(Received 20 October 1990; accepted 20 December 1990)

Abstract

I) 1-(2-Deoxy-2-fluoro- β-D-arabinopyra-nosyl)thymine-water complex, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, $M_{r}=278 \cdot 24$, monoclinic, $P 2_{1}, \quad a=8.669(4), \quad b=$ 6.395 (3), $\quad c=10.713$ (7) $\AA, \quad \beta=103.73$ (5),$\quad V=$ 576.9 (6) $\AA^{3}, Z=2, D_{m}=1 \cdot 60, D_{x}=1.602 \mathrm{Mg} \mathrm{m}^{-3}$, graphite-monochromated Mo $K \alpha$ radiation, $\lambda=$ $0.71069 \AA, \quad \mu=0.134 \mathrm{~mm}^{-1}, \quad F(000)=292$, room temperature, final $R=0.030$ for 1307 unique observed [$F \geq 4 \sigma(F)$] reflections. (II) 1-(2-Deoxy-2-fluoro- β-D-arabinopyranosyl)-5-ethyluracil, $\mathrm{C}_{11} \mathrm{H}_{15}$ $\mathrm{FN}_{2} \mathrm{O}_{5}, M_{r}=274 \cdot 25$, hexagonal, $P 6_{5}, a=10 \cdot 108$ (7), $c=19.48$ (1) $\AA, V=1724$ (2) $\AA^{3}, Z=6, D_{m}=1 \cdot 54$, $D_{x}=1.585 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ graphite-monochromated Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu=0.127 \mathrm{~mm}^{-1}$, $F(000)=864$, room temperature, final $R=0.026$ for 694 unique observed $[F \geq 4 \sigma(F)$] reflections. The geometries of molecules (I) and (II) show a close similarity. In both structures the sugar ring adopts a

[^2]slightly distorted chair conformation and for both molecules the fluorine and one of the hydroxyl substituents are placed in an axial position on the ring. The N-glycosidic torsion angle χ between the pyranose ring and the pyrimidine base is oriented $-a c$ for both molecules. The terminal C of the ethyl group in (II) deviates from the base least-squares plane. The packing in both crystals is determined by intermolecular hydrogen bonds and base-stacking forces. In (I) the solvent water is kept from being disordered by a dense network of strong hydrogen bonds. In (II) the molecules are packed in such a way that a single stranded left-handed helix is formed which resembles the structure of the 6_{1} poly $\left(2^{\prime}-O-\right.$ methylcytidine) single stranded helix. No intramolecular hydrogen bonds are present. The conformational parameters are in accordance with the IUPAC-IUB Joint Commission on Biochemical Nomenclature (1983) guidelines.

Introduction. The crystal structures of the title compounds have been determined as part of a continuing program of investigation of potentially anti-viral
(c) 1991 International Union of Crystallography

[^1]: * Lists of structure factors, anisotropic thermal parameters, torsion angles and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53842 (45 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 $\dagger \tan (\Delta / 2)=\left[\left(\varphi_{2}+\varphi_{4}\right)-\left(\varphi_{1}+\varphi_{3}\right)\right] /\left(3 \cdot 0777 \varphi_{0}\right), \quad \varphi_{m}=\varphi_{0} / \cos (\Delta /$ 2).

[^2]: *Structural Studies of Modified Nucleosides. X. Part IX: Everaert, Peeters, Blaton, De Ranter, Van Aerschot \& Herdewijn (1991).
 \dagger To whom correspondence should be addressed.

